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There are many problems in a tethered satellite system, such as the danger of the tether being cut by space debris
and difficulty in analyzing the tether because of its flexibility. Moreover, because a tether cannot be pushed, control
tension is constrained to be nonnegative during deployment and retrieval of the tethered satellite. Therefore, it
is difficult to guarantee that the tethered satellite will not collide with the mother ship or that the tether will not
entangle itself with the mother ship. A method is proposed to guarantee the safety of a tethered satellite. To operate
a tethered satellite safely while avoiding the situations described, a switching control algorithm is constructed for
satellite deployment and retrieval. A model in which the tether has neither mass nor flexibility is used to construct
a switching control algorithm. Because this model is linear when the dimensionless input is constant, conditions
for guaranteeing safety can be derived analytically. Then, the obtained conditions are applied to a simulation with
a model in which the tether has mass and flexibility to show the validity of the conditions for guaranteeing safety.

Nomenclature
A = cross section of tether, m2

d = dummy input
E = Young’s modulus of tether, N/m2

F(s, t) = elastic force vector in tether
F′(s, t) = damping force vector in tether
G = gravitational constant, m3 · kg−1 · s−2

In = n × n identity matrix
J = performance index
L f = length of tether at target position, m
M = mass of Earth, kg
m = mass of subsatellite, kg
R = position vector of tether with respect to Earth
RG = position vector of mother ship, [0, 0, RG]T

RG = radius of circular orbit of mother ship, m
r = position vector of tether with respect to mother ship
rsat = position vector of subsatellite with respect to

mother ship, [x, y, z]T

S f , Q, R = weighting matrices of performance index
s = coordinate along tether
T (t) = time-dependent horizon length of performance

index, T f (1 − e−αt ), T f = 500, α = 0.5
u = control input (tension of the tether), N
X = state of subsatellite, [x, y, z, ẋ, ẏ, ż]T

X0 = initial state of subsatellite, [x0, y0, z0, ẋ0, ẏ0, ż0]T

X f = target state of subsatellite, [0, 0, L f , 0, 0, 0]T

z = coordinate pointing to the center of the Earth
from the mother ship

zmin = minimum value of z to which subsatellite can
approach mother ship
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η = damping coefficient of tether, N · s/m
ρ = line density of tether, kg/m
� = angular velocity of mother ship, rad/s
ω = angular velocity vector, [0, −�, 0]T

× = external product of vectors

Subscript

i = i th node on tether

Superscripts

k = kth time step of calculation
T = transpose
ˆ = dimensionless variable

Introduction

A SPACE tether is a wire or rope that connects a mother ship
to a subsatellite in space. A subsatellite connected by a tether

is called a tethered satellite, and a system that includes a tethered
satellite is called a tethered satellite system. A tethered satellite
system has various possible applications in future space missions.
For example, it can be utilized for measurements of air density
at different altitudes and of magnetic fields and the transport of
payloads. However, there are some problems, such as the danger of
the tether being cut by space debris and difficulty in analyzing the
tether because of its flexibility.

Because a tethered satellite system is an interesting nonlinear
system, various studies have been performed concerning the control
of a tethered satellite.1−6 There are also studies7,8 on the possibility
of a tether being cut by space debris. In addition to those studies, an
actual mission9−11 was performed in 1996. However, the tether broke
during deployment, and the mission ended in failure. The cause was
reported to be that a large portion of the tether was carbonized
by the electric discharge generated in the tether. Moreover, it was
also reported that no sign of failure was evident until the tether
broke.12

Consequently, it is difficult to predict when slack or breaking of
the tether will occur. If slack or breaking takes place, the tether may
wind around the mother ship, or the loose satellite may collide with
the mother ship. Therefore, it is important to discuss adequately the
guaranteeing of safety. The purpose of our study is to be able to
guarantee that a tethered satellite will not collide with the mother
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ship even if it becomes uncontrollable due to slack or breaking of
the tether during deployment or retrieval. In this study, we guarantee
that the tethered satellite does not reach the altitude of the mother
ship even if the tether becomes slack or breaks. To obtain such a
guarantee, we construct a switching algorithm for the control in-
put. The switching control law is derived from a model in which
the tether has neither mass nor flexibility because the equation of
motion of the model including the mass and flexibility of the tether
is too complicated to derive the conditions for guaranteeing safety
analytically. In the simulation, we utilize the model including the
mass and flexibility of the tether, whereas the control input is calcu-
lated from the model disregarding mass and flexibility of the tether.
We show that the model, including the mass and flexibility of the
tether, demonstrates satisfactory control even when the control input
and the conditions for guaranteeing safety are applied based on the
model disregarding mass and flexibility of the tether. In this paper,
only the retrieval simulation is presented because of the limitation of
space and also for the following reason. Retrieval involves a higher
possibility of slack of the tether than deployment, and also, if the
tether is pulled too much, the tethered satellite may collide with the
mother ship.

Mathematical Model
Consider the tethered satellite system shown in Fig. 1. We use a

model in which the mass and flexibility of the tether are disregarded
to obtain control designs. We call this model the point mass model.
We use this model because the equation of motion of a model in
which the mass and flexibility of the tether are considered is too
complicated to derive the conditions for guaranteeing safety analyt-
ically (Appendix A). A merit of using the point mass model is that
we can obtain an analytic solution when the dimensionless control
input is constant. Then, we derive a method of guaranteeing safety
from this analytic solution.

The tethered satellite is deployed from or retrieved by the mother
ship toward a target position on the positive z axis with z = L f .
The target position can be kept at equilibrium with positive ten-
sion in the tether. We assume the following when considering the
system.

1) The mother ship is in a circular orbit of radius RG and angular
velocity � around the Earth.

2) The masses of the tether and the tethered satellite are much
smaller than that of the mother ship.

3) The sizes of the mother ship and the tethered satellite are not
considered.

4) Celestial bodies other than the Earth are disregarded.
5) The length of the tether is much shorter than RG .
We consider the motion of the tethered satellite in a rotating frame

fixed on the mother ship with one of its axes, z, always pointing to the
center of the Earth. The equation of motion of the tethered satellite
can be written as

m
d2rsat(t)

dt2
= − Gm MR(t)

‖R(t)‖3
+ mω × (ω × R(t))

− 2mω × drsat(t)

dt
− u(t)

rsat(t)

‖rsat(t)‖ (1)

Fig. 1 Tethered satellite
system.

Under assumptions 1 and 5, Eq. (1) becomes

m
d2rsat(t)

dt2
= − GmM

‖RG‖3

(
I3 − 3RGRT

G

‖RG‖2

)
rsat(t) + mω

× [ω × rsat(t)] − 2mω × drsat(t)

dt
− u(t)

rsat(t)

‖rsat(t)‖ (2)

The state equation as is derived from Eq. (2) is as follows:

Ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

ż

2�ż − x

m‖rsat‖u

−�2 y − y

m‖rsat‖u

3�2z − 2�ẋ − z

m‖rsat‖u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

Although the actual control input is the tension of the tether, we
make the input dimensionless to simplify the state equation. The re-
lationship between the actual control input u and the dimensionless
control input û is

u = m‖rsat‖�2û (4)

Then, Eq. (3) is rewritten as

Ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

ż

2�ż − �2xû

−�2 y − �2 yû

3�2z − 2�ẋ − �2zû

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

Although Eq. (5) is not a complicated state equation, it is difficult
to deal with this system because it is bilinear. Additionally, because
the tether cannot be pushed, the control tension is constrained to be
nonnegative, that is, u, û ≥ 0, which makes it difficult to guarantee
safety. However, if û is constant, Eq. (5) becomes a linear system
and we can obtain the analytic solution, which can be utilized to
guarantee safety, as is described in the next section. When û = c
(constant), the state equation becomes linear as follows:

Ẋ = AX (6)

where

A =

⎡⎢⎢⎣
0 I3

−�2

⎛⎝c 0 0

0 c + 1 0

0 0 c − 3

⎞⎠ 2�

⎛⎝ 0 0 1

0 0 0

−1 0 0

⎞⎠
⎤⎥⎥⎦ (7)

Let X0 be the state vector at the moment (t = 0) of switching the
dimensionless control input to û = c. Then the analytic solution is
given by X(t) = eAt X0, which can be utilized to estimate the reach-
able region of the tethered satellite.

It is clear from state equation (5) that although the influence of
tension also appears in motion out of the orbital plane, y, the motion
in the y direction is independent of that in the x–z plane. Moreover, y
motion does not affect the altitude of the tethered satellite. Therefore,
we derive the conditions of the state for guaranteeing safety using
the motion in the x–z plane and we disregard motion out of the
orbital plane hereafter.
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Method of Guaranteeing Safety
The worst case in the control of the tethered satellite is that the

satellite becomes uncontrollable due to the tension of the tether
falling to zero as a result of slack or cutting. When the tether slack-
ens, we can regain control of the satellite by pulling the tether. How-
ever, if the tether is pulled beyond necessity, the satellite may collide
with the mother ship or the tether may wind around the mother ship.
Moreover, if the tether breaks, control of the satellite will become
impossible.

To avoid this situation, we first apply constraints to the state of
the satellite. That is, we set two constraints to the control law: u ≥ 0
and z(t) ≥ zmin with L f ≥ zmin ≥ 0. If z(t) ≥ zmin is always satisfied,
the satellite never collides with the mother ship at z = 0 during de-
ployment/retrieval toward z = L f . However, there is no guarantee
that these two constraints of the control input and the state can al-
ways be satisfied simultaneously. In particular, when the tension of
the tether falls to zero and the tether slackens, it becomes impossi-
ble to constrain the state because the satellite becomes uncontrol-
lable. Then, in this paper, we stipulate that there is no danger of the
satellite colliding with the mother ship even when the satellite be-
comes uncontrollable. That is, we guarantee safety by guaranteeing
z(t) ≥ zmin(zmin ≥ 0) for all t ≥ 0 even when the tension of the tether
falls to zero. Hence, our main concern is the value of z(t).

Here, we investigate analytic solutions to be used in guaran-
teeing safety. First, we calculate the control input û f required
to maintain equilibrium in the target state. For the target state
X f = [0, 0, L f , 0, 0, 0]T , the equilibrium condition Ẋ = 0 for Eq. (5)
leads to û f = 3. Next, we consider motion with a constant dimen-
sionless input û = c. If c ≥ û f , the analytic solution for z(t) after
switching at t = 0 is given by

z(t) = (p + �)ż0 − 4�2cx0

2pξ1

sin ξ1t + (p − 7�)z0 + 4ẋ0

2p
cos ξ1t

+ (p − �)ż0 + 4�2cx0

2pξ2

sin ξ2t + (p + 7�)z0 − 4ẋ0

2p
cos ξ2t

(8)

where

p = �
√

16c + 1, ξ1 = �

√
1
2
[(p/�) + 1] + c

ξ2 = �

√
1
2
[(p/�) − 1] + c (9)

It is clear from Eq. (8) that the satellite vibrates around z = 0. That
is, the satellite periodically reaches the altitude of the mother ship
when c ≥ û f . Therefore, we only consider the case of c < û f to
guarantee safety. If c < û f , the analytic solution z(t) is given by

z(t) = F sin (ζ1t + φ) + [(h + k)/p]eζ2t + [(h − k)/p]e−ζ2t (10)

where

p = �
√

16c + 1, ζ1 = �

√
1

2

[(
p

�

)
+ 1

]
+ c

ζ2 = �

√
1

2

[(
p

�

)
− 1

]
− c, h = p + 7�

4
z0 − ẋ0

k = �2c

ζ2

x0 + p − �

4ζ2

ż0, φ = tan−1 (p − 7�)ζ1z0 + 4ζ1 ẋ0

(p + �)ż0 − 4�2cx0

F = 1

2p

√
[4ẋ0 + (p − 7�)z0]2 +

[
(p + �)ż0 − 4�2cx0

ζ1

]2

(11)

Fig. 2 Method of guaranteeing safety.

Equation (10) has a diverging term due to ζ2 > 0. Therefore, z(t) can
be maintained above a certain value and we can guarantee safety on
the basis of Eq. (10).

The method of guaranteeing safety by applying the analytic so-
lution is shown in Fig. 2. In this work, we aim at guaranteeing
z(t) ≥ zmin (zmin ≥ 0) for all t ≥ 0, where z = 0 is the altitude of the
mother ship. First, we identify the region of the state within which
the satellite does not reach z = zmin whenever the tether slackens or
breaks, that is, û = 0, which corresponds to c = 0. We call such a
region the safe region. If we can constrain the state of the satellite to
within the safe region, we can guarantee safety. However, there are
some obstacles to guaranteeing safety because the system is non-
linear, and moreover, there is a constraint that the tether cannot be
pushed. Then, we utilize the analytic solution obtained from Eq. (6)
and c < û f .

For the satellite to remain in the safe region, we derive the switch-
ing control law using analytic solution (10). The region used by the
switching control law is called the control region. The control region
is that in which the satellite does not leave the safe region as long
as û = c. The boundary of the control region gives the switching
conditions.

While the satellite is in the control region, we can use any control
law. When the satellite reaches the boundary of the control region,
the control input is switched to û = c. Because the satellite’s motion
after switching is based on analytic solution (10), it can be guar-
anteed that the satellite does not leave the safe region. When the
satellite returns to the control region again, the control law returns
again to the earlier control law. Then the satellite is guaranteed to
always remain in the safe region. Therefore, the satellite does not
reach the altitude z = zmin even when the tether slackens or is cut.

In this regard, we pay attention to the following. After the satellite
leaves the control region, it is difficult to guarantee theoretically that
the satellite will return to the control region, although the satellite
returns to the control region in the simulated results. However, the
main purpose of our study is to guarantee that the satellite does not
collide with the mother ship, that is, z(t) ≥ zmin, ∀t ≥ 0. We propose
that by switching the control algorithm, z(t) ≥ zmin can always be
guaranteed.

Safe Region
If the tether slackens or breaks, the satellite begins free motion.

Hence, the safe region is equivalent to the region of the state in
which the satellite does not reach z = zmin under free motion. The
analytic solution of free motion, c = 0, in the x–z plane from the
initial state [x0, z0, ẋ0, ż0]T is given as the solution of Hill’s equation
(see Ref. 13),

x(t) = −(2ż0/�) cos �t + ẋ0t + x0 + (2ż0/�)

z(t) = (ż0/�) sin �t + z0 (12)

From Eq. (12), the necessary and sufficient condition for z(t) ≥ zmin

for all t ≥ 0 can be found as follows:

|ż0| ≤ �(z0 − zmin) (13)
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Consequently, the satellite does not reach z = zmin whenever the
tether slackens or breaks if the state of the satellite satisfies the
following inequality:

C(X) = |ż(t)| − �(z(t) − zmin) ≤ 0, ∀t ≥ 0 (14)

Inequality (14) corresponds to the safe region in Fig. 2. Because
Eq. (14) must always be satisfied, it is a natural idea to impose
Eq. (14) as a constraint. However, there is another constraint that
û must be nonnegative. Therefore, we examine whether Eq. (14)
can always be satisfied with a nonnegative control input. That is,
we check whether û ≥ 0 exists while satisfying Ċ(X) ≤ 0 when the
state reaches the boundary of the safe region, C(X) = 0. Here, Ċ(X)
is calculated as

Ċ(X) = ∂C(X)

∂X
Ẋ = [0, 0, −1, 0, 0, ±1]Ẋ (15)

where the sign of ±1 depends on the sign of ż and Ẋ is given by
Eq. (5). As a result, the value of the control input that must be
adopted at the boundary such that Ċ(X) ≤ 0 holds is obtained as

û ≥ 2 + (zmin/z) − (2ẋ/�z) (if ż ≥ 0) (16)

û ≤ 2 + (zmin/z) − (2ẋ/�z) (if ż < 0) (17)

A nonnegative control input û ≥ 0 that satisfies Eq. (16) always
exists. However, for û ≥ 0 that satisfies Eq. (17) to exist, the state of
the satellite must satisfy the following inequality:

ẋ ≤ �z + (�zmin/2) (18)

To always satisfy Eq. (14), the state must satisfy Eq. (18) when
ż < 0 and C(X) = 0. Similarly, to satisfy Eq. (18) with nonnegative
control input, the state must satisfy the newly generated constraints.
Although we do not show details because of the limitation of space,
new constraints arise one after another to satisfy the preceding con-
straints, and as a result, it cannot be guaranteed that Eq. (14) is
always satisfied with nonnegative control input. Hence, it is neces-
sary to utilize the control region to guarantee safety.

Control Region
Next, we derive the conditions of the initial state X0 to continue

to satisfy Eq. (14) under û = c. For this, the analytic solution (10) is
applicable. Equation (10) is differentiated with respect to time and
substituted into Eq. (14) to obtain the following conditions.

If ż(t) ≥ 0,

−ζ1 F cos (ζ1t + φ) + �F sin (ζ1t + φ) + [(h + k)/p](� − ζ2)e
ζ2t

+ [(h − k)/p](� + ζ2)e
−ζ2t − �zmin ≥ 0 (19)

If ż(t) < 0,

ζ1 F cos (ζ1t + φ) + �F sin (ζ1t + φ) + [(h + k)/p](� + ζ2)e
ζ2t

+ [(h − k)/p](� − ζ2)e
−ζ2t − �zmin ≥ 0 (20)

Note that parameters in Eqs. (19) and (20) depend on c and X0, as
shown in Eq. (11). The sufficient condition of X0 such that Eqs. (19)
and (20) are satisfied at any time can be derived as (see Appendix B
for derivation)

h + k > 0 (21)

If ż ≥ 0, k� − hζ2 < 0, or ż < 0, k� + hζ2 < 0,[
2

√
(h2 − k2)

(
�2 − ζ 2

2

)/
p
]

− F
√

�2 + ζ 2
1 ≥ �zmin (22)

If ż ≥ 0, k� − hζ2 ≥ 0, or ż < 0, k� + hζ2 ≥ 0,

[2(h� + kζ2)/p] − F
√

�2 + ζ 2
1 ≥ �zmin (23)

Inequalities (21–23) define the control region in Fig. 2, and the
boundary of the control region gives switching conditions for guar-
anteeing safety.

In summary, we propose to give switching conditions for the
control input. When the state of the satellite is within the control
region defined by Eqs. (21–23), the control input is determined
according to the applied control law, and when the state reaches the
boundary of the control region, the control input is maintained at
û = c. Then the tethered satellite remains in the safe region as long
as the tether is undamaged. Consequently, z(t) ≥ zmin, ∀t ≥ 0, can
be guaranteed whenever the tether slackens or breaks.

Note that the present analysis is valid regardless of y motion be-
cause the motion in the x−z plane is decoupled from y motion, as
mentioned in the preceding section. Therefore, the distance between
the tethered satellite and the mother ship is always greater than or
equal to zmin and, consequently, the tethered satellite never collides
with the mother ship even when y motion oscillates or diverges.
Moreover, the safe region defined by Eq. (14) and the control region
defined by Eqs. (21–23) are independent of the mass of the satellite
and depends only on zmin, �, and c. Therefore, the proposed switch-
ing conditions are not affected by the mass of the satellite, whereas
the actual input is affected by the mass of the satellite, as shown in
Eq. (4).

Simulation
Receding Horizon Control

The most important feature of the proposed method of guarantee-
ing safety is that this method does not depend on the control law to
be applied. In this paper, we apply nonlinear receding horizon con-
trol (model predictive control) as the control law effective for the
nonlinear system and employ a fast algorithm.14,15 Receding horizon
control is a kind of optimal control that minimizes the performance
index with a moving horizon and can be executed with only a mod-
erate amount of computation because the moving horizon is shorter
than the total time required in control.

Because the control input has the inequality constraint û ≥ 0,
the inequality constraint is transformed into an equality constraint

û − d̂2 = 0 by introducing a dummy input d̂ that can be handled
by the algorithm. In the calculation of the control law, we use the
dimensionless states. The performance index is given as

J = 1

2

[
X̂(t + T ) − X̂ f

]T
S f

[
X̂(t + T ) − X̂ f

]
+ 1

2

∫ t + T

t

[
(X̂ − X̂ f )

T Q(X̂ − X̂ f ) + (v̂ − v̂ f )
T R(v̂ − v̂ f )

]
dt ′

(24)

where X̂ = [x/L f , y/L f , z/L f , ẋ/L f �, ẏ/L f �, ż/L f �]T , X̂f =
[0, 0, 1, 0, 0, 0]T , v̂ = [û, d̂]T , and v̂ f = [3,

√
3]T . The horizon

length T may depend on time in general. At each time t , the fi-
nite horizon optimal-control problem is solved with the initial state
given by x(t), and only the initial value of optimal control over the
horizon is given as the actual control input, which results in a kind
of state feedback control.

Compensation of Mass of Tether
As well as the switching conditions for guaranteeing safety, the

control input is also determined by the point mass model disregard-
ing the mass and flexibility of the tether and is applied to the model
including mass and flexibility, which gives rise to the following
problem. If the control input determined by the point mass model is
applied directly to the model including mass and flexibility of the
tether, the equilibrium position of the tethered satellite shifts due to
the mass of the tether, and satisfactory control of the satellite cannot
be achieved. Therefore, to compensate for the mass of the tether,
the following operation is performed for the control input.

At the equilibrium position X f = [0, 0, L f , 0, 0, 0]T , the external
forces are the gravitational force and the centrifugal force. Hence,
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the total external force over the tether at equilibrium is expressed as∫ L f

0

(
2G Mρ

R3
G

z + ρ�2z

)
dz = 3�2

2
ρL2

f (25)

The external force applied to the tethered satellite is given by(
2G Mm

/
R3

G

)
L f + ρ�2mL f = 3�2mL f (26)

Then, the total external force on both the tether and the tethered
satellite is expressed as

3�2
(
m + 1

2
ρL f

)
L f (27)

By comparing Eq. (27) with Eq. (26), we find that if one-half of
the mass of the tether is added to the mass of the tethered satellite,
the mass of the tether can be compensated for in the sense that the
equilibrium position of the tethered satellite remains the same as
that of the point mass model. Therefore, we modify the relation of
û and u in Eq. (4) as

u = [m + (ρ‖rsat‖/2)] ‖rsat‖�2û (28)

Satisfactory results are obtained with this simple compensation, as
shown in simulations presented next.

Retrieval Simulation
Simulations are performed using the model including mass and

flexibility of the tether and applying the switching conditions for
guaranteeing safety obtained from the point mass model; we ver-
ify the validity of the model. See Appendix C for the method of
numerical computation of the simulation. Simulation results are
shown in Figs. 3–10. The parameters employed in this study are
shown in Table 1; they were taken from Cosmo and Lorenzini16

and Koakutsu.17 The objective of this simulation is to keep the
satellite under zmin = 200 m during retrieval toward z = 300 m.
Other parameters are X0 = [250, −100, 700, 0, 0, 0]T , X f = [0, 0,
300, 0, 0, 0]T , S f = diag[10, 10, 50, 10, 10, 10], Q = diag[1, 2, 3,
1, 1, 1], and R = 0.1I2. The constant dimensionless input is c = 2.8,
and each simulation time is 6 h. In Figs. 3–10, initial represents
the initial position and target represents the target position. The
dashed lines in Figs. 3–10 show trajectories where the control input
is switched to û = c.

Figures 3 and 4 show the solution trajectory and time history
without the switching conditions, respectively. Figure 3 indicates

Table 1 Parameters

Parameter Value Unit

A 1.32 × 10−6 m2

E 9.80 × 109 N/m2

m 10.0 kg

RG 6.60 × 106 m

η 1.00 × 10−3 N · s/m

ρ 1.80 × 10−3 kg/m

� 1.18 × 10−3 rad/s

Fig. 3 Model including mass and flexibility, x–z and y–z trajectories
for nonswitching case.

Fig. 4 Model including mass and flexibility, time history for
nonswitching case.

Fig. 5 Model including mass and flexibility, x–z and y–z trajectories
for switching case.

Fig. 6 Model including mass and flexibility, time history for switching
case.

a) b)

Fig. 7 Model including mass and flexibility, z–ż trajectories for non-
switching and switching cases.
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Fig. 8 Point mass model, x–z and y–z trajectories for nonswitching
case.

Fig. 9 Point mass model, x–z and y–z trajectories for switching case.

Fig. 10 Point mass model, z–ż trajectories for nonswitching and
switching cases.

that, if we assume that the tether does not break, retrieval is safe
even without switching. However, if the tether breaks at point P
shown in Fig. 3, the satellite will enter the region of z < zmin, as
shown by the ·– line. Then, for the satellite not to enter the region
of z < zmin, we apply the switching control law using the control
region to the dimensionless control input. Figures 5 and 6 show the
solution trajectory and time history with the switching conditions,
respectively.

We explain the difference in detail between the cases of switch-
ing and nonswitching utilizing Fig. 7, which shows the solution
trajectories in the z–ż plane. The region between the two straight
lines in Fig. 7 represents the safe region, C(X) ≤ 0, defined by
Eq. (14). That is, constraining the state of the satellite to fall between
the two straight lines guarantees safety. Figure 7a shows the result
without the switching conditions for the control input and Fig. 7b
shows the result with switching. If the tether slackens or breaks in
the region outside the two straight lines, the satellite will enter the
region of z < zmin. In Fig. 7b, because the state always remains in
the region between the two straight lines, the satellite does not enter
the region of z < zmin whenever the tether slackens or breaks.

In both cases of nonswitching and switching, the convergence
of the motion out of the orbital plane y is much slower than that
in the orbital plane, x–z plane, because we prioritize the control
response in the x–z plane to demonstrate the switching control law.
As already mentioned, the proposed switching conditions guarantee
safety even when y motion oscillates or diverges. The response out
of the orbital plane can be improved by increasing the weights for
y and ẏ in the performance index at the expense of the response in
the orbital plane.

The simulated results using the point mass model are shown in
Figs. 8–10 to evaluate the influence of the mass and flexibility of the
tether. Figure 8 shows the solution trajectory without the switching
conditions, Fig. 9 shows the solution trajectory with the switching
conditions, and Fig. 10 shows the solution trajectories in the z–ż
plane. The trajectories of the satellite almost conform to those of
the model including mass and flexibility of the tether. Moreover,
from the results for the nonswitching case, the maximum lateral
displacement of the tether is 1.72 m for the tether length of 493.91 m,
which corresponds to 0.35%. From the results for the switching case,
the maximum lateral displacement of the tether is 2.69 m for the
tether length of 630.89 m, which corresponds to 0.43%. Hence, the
influence of flexibility is very small and the difference between the
two models is slight. Therefore, the influence of mass and flexibility
is so small that the proposed switching control law constructed for
the point mass model is sufficiently effective for the realistic model
that includes the mass and flexibility of the tether.

Conclusions
To avoid the situation of a tethered satellite colliding with the

mother ship, we constructed a switching algorithm for control in-
put. That is, the switching conditions were imposed on the control
input by applying the analytic solution for a constant dimension-
less input. The switching conditions were calculated using the point
mass model, and simulations were performed for the model includ-
ing mass and flexibility of the tether. As shown by the simulated
results, the influence of flexibility was small, and satisfactory per-
formance was obtained. By virtue of the switching conditions, the
satellite does not collide with the mother ship even if the tether
slackens or breaks and the satellite becomes uncontrollable. That is,
the region of motion of the satellite is guaranteed to be safe.

Appendix A: Model Including Mass
and Flexibility of the Tether

We summarize the partial differential equation of the model
including mass and flexibility of the tether. We assume that the
tether has elastic force and damping force, F(s, t) and F′(s, t),
respectively, that are expressed as follows:

F(s, t) = E A
‖r(s + �s, t) − r(s, t)‖ − �s

�s

· r(s + �s, t) − r(s, t)

‖r(s + �s, t) − r(s, t)‖

= E A

(
r(s + �s, t) − r(s, t)

�s
− r(s + �s, t) − r(s, t)

‖r(s + �s, t) − r(s, t)‖

)

→ E A
∂r(s, t)

∂s

(
1 −

∥∥∥∂r(s, t)

∂s

∥∥∥−1
)

(�s → 0) (A1)

F′(s, t) = ηA
∂

∂t

‖r(s + �s, t) − r(s, t)‖ − �s

�s

· r(s + �s, t) − r(s, t)

‖r(s + �s, t) − r(s, t)‖

= ηA
∂

∂t

(∥∥∥ r(s + �s, t) − r(s, t)

�s

∥∥∥ − 1

)

· r(s + �s, t) − r(s, t)

‖r(s + �s, t) − r(s, t)‖ → ηA
∂

∂t

(∥∥∥∂r(s, t)

s

∥∥∥)

·
(

∂r(s, t)

∂s

)∥∥∥∂r(s, t)

∂s

∥∥∥−1

(�s → 0) (A2)
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Hence, the equation of motion of an infinitesimal portion �s of the
tether is derived as

ρ�s
∂2R(s, t)

∂t2
= − G Mρ�sR(s, t)

‖R(s, t)‖3
+ ρ�sω × [ω × R(s, t)]

− 2ρ�sω × ∂R(s, t)

∂t
+ F(s + �s, t)

− F(s, t) + F′(s + �s, t) − F′(s, t) (A3)

Because the order of (‖r‖2/‖RG‖2) can be neglected, the term of
gravitational force can be transformed as follows18:

R(t)

‖R(t)‖3
= RG + rsat(t)

‖RG + rsat(t)‖3

� 1

‖RG‖3

{
RG + rsat(t) − 3

[
RT

Grsat(t)
]
RG

‖RG‖2

}

= RG

‖RG‖3
+ 1

‖RG‖3

(
I3 − 3RT

GRG

‖RG‖2

)
rsat(t) (A4)

When both sides of the equation of motion are divided with �s, and
taking the limit of �s → 0, the partial differential equation of the
tether is obtained as

ρ
∂2r(s, t)

∂t2
= − G Mρ

‖RG‖3

(
I3 − 3RGRT

G

‖RG‖2

)
r(s, t) +ω× [ω× r(s, t)]

− 2ρω× ∂r(s, t)

∂t
+ ∂F(s, t)

∂s
+ ∂F′(s, t)

∂s
(A5)

where

∂F(s, t)

∂s
= E A

(
I3 − I3

‖A‖ + AAT

‖A‖3

)
× B

∂F′(s, t)

∂s
= ηA

[(
BAT

‖A‖2
− AAT BAT

‖A‖4

+ ABT

‖A‖2
− AAT AT B

‖A‖4

)
C + AAT

‖A‖2
D

]

A = ∂r(s, t)

∂s
, B = ∂2r(s, t)

∂s2
, C = ∂2r(s, t)

∂s∂t

D = ∂3r(s, t)

∂s2∂t
(A6)

The boundary condition at s = � is given by the equation of motion
for the tethered satellite as follows:

m
∂2r(�, t)

∂t2
= − Gm M

‖RG‖3

(
I3 − 3RGRT

G

‖RG‖2

)
r(�, t)

+ mω × [ω × r(�, t)] − 2mω × ∂r(�, t)

∂t

− E A

(
∂r(�, t)

∂s

)(
1 −

∥∥∥∂r(�, t)

∂s

∥∥∥−1
)

(A7)

To control the tethered satellite, the tension of the tether must be
controlled at the reeling-out point. At this point, the elastic force
corresponds to the tension. Hence, the boundary condition at s = s0

is given by

r(s0, t) = 0 (A8)

E A
(

∂r(s0, t)

∂s

)(
1 −

∥∥∥∂r(s0, t)

∂s

∥∥∥−1)
= u(t)

∂r(s0, t)

∂s

∥∥∥∂r(s0, t)

∂s

∥∥∥−1

(A9)

Appendix B: Derivation of Control Region
When ż (t) > 0

The left-hand side of Eq. (19) is rewritten, where ψ =
φ + tan−1 ζ1/�,

(left-hand side) = F
√

�2 + ζ 2
1 sin (ζ1t + ψ) + [(h + k)/p]

× (� − ζ2)e
ζ2t + [(h − k)/p](� + ζ2)e

−ζ2t

−�zmin

≥ −F
√

�2 + ζ 2
1 + [(h + k)/p](� − ζ2)e

ζ2t

+ [(h − k)/p](� + ζ2)e
−ζ2t − �zmin (B1)

Here, we define H(t) as

H(t) = −F
√

�2 + ζ 2
1 + [(h + k)/p](� − ζ2)e

ζ2t

+ [(h − k)/p](� + ζ2)e
−ζ2t − �zmin (B2)

To consider a safer side, we derive the condition of the initial state
X0 that satisfies H(t) ≥ 0 for all t ≥ 0, and we utilize this condition
as the switching condition.

When h + k < 0, H(t) ≥ 0 cannot be satisfied because the second
term on the right-hand side of Eq. (B2) diverges to −∞. When
h + k = 0, H(t) is rewritten as

H(t) = −F
√

�2 + ζ 2
1 + [(h − k)/p](� − ζ2)e

−ζ2t − �zmin

→ −F
√

�2 + ζ 2
1 − �zmin < 0 (t → ∞) (B3)

Therefore, H(t) ≥ 0 cannot be satisfied in this case. Consequently,
h + k > 0 is a necessary condition of H(t) ≥ 0 for all t ≥ 0.

Next, we calculate Ḣ(t) and find t1 that satisfies Ḣ(t1) = 0.

Ḣ(t) = h + k

p
(� − ζ2)ζ2eζ2t − h − k

p
(� + ζ2)ζ2e−ζ2t

Ḣ(0) = 2ζ2(k� − hζ2)

p
(B4)

t1 = 1

2ζ2

ln
(h − k)(� + ζ2)

(h + k)(� − ζ2)
(B5)

Because the time that satisfies Ḣ = 0 is unique and H(t) → +∞
(t → ∞), H(t) ≥ 0 for all t ≥ 0 can always be satisfied if the initial
condition X0 satisfies either H(t1) ≥ 0 and Ḣ(0) < 0 or H(0) ≥ 0
and Ḣ(0) ≥ 0.

If Ḣ(0) ≥ 0, that is, k� − hζ2 ≥ 0,

H(0) = −F
√

�2 + ζ 2
1 + [(h + k)/p](� − ζ2)

+ [(h − k)/p](� + ζ2) − �zmin ≥ 0 (B6)

which can be rewritten as

2(h� + kζ2)/p − F
√

�2 + ζ 2
1 ≥ �zmin (B7)

If Ḣ(0) < 0, that is, k� − hζ2 < 0,

H(t1) = −F
√

�2 + ζ 2
1 + [(h + k)/p](� − ζ2)e

ζ2t1

+ [(h − k)/p](� + ζ2)e
−ζ2t1 − �zmin ≥ 0 (B8)
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which can be rewritten as[
2

√
(h2 − k2)

(
�2 − ζ 2

2

)/
p
]

− F
√

�2 + ζ 2
1 ≥ �zmin (B9)

When ż (t) < 0
The derivation of this case is omitted because it is the same as in

the case of ż(t) ≥ 0. Then, H(t) is defined as

H(t) = −F
√

�2 + ζ 2
1 + [(h + k)/p](� + ζ2)e

ζ2t

+ [(h − k)/p](� − ζ2)e
−ζ2t − �zmin (B10)

and the conditions of X0 satisfying H(t) ≥ 0 for all t ≥ 0 are as
follows:

h + k > 0 (B11)

If Ḣ(0) ≥ 0, that is, k� + hζ2 ≥ 0,

[2(h� + kζ2)/p] − F
√

�2 + ζ 2
1 ≥ �zmin (B12)

If Ḣ(0) < 0, that is, k� + hζ2 < 0,[
2

√
(h2 − k2)

(
�2 − ζ 2

2

)/
p
]

− F
√

�2 + ζ 2
1 ≥ �zmin (B13)

Consequently, the sufficient conditions of X0 for Eqs. (19) and
(20) being satisfied at any time can be summarized as Eqs. (21–23).

Appendix C: Discretization of the Tether
To solve the partial differential equation of the tether numeri-

cally, the equation is discretized. The length of the tether outside
the mother ship is not constant because of deployment and retrieval.
Hence, it is necessary to consider how the nodes representing the
position of the tether should be chosen. In this paper, the whole
tether is divided into segments of fixed length h, and the number of
segments increases or decreases as the tethered satellite is deployed
or retrieved. The position of the tethered satellite is denoted as the
0th node, and the position nearest to the mother ship is denoted as
the nth node. The length from the nth node to the reeling-out point
of the tether is denoted by �s(t). Using Eq. (A9), we can obtain the
expression of �s(t) as follows:

�s(t) = {E A/[E A + u(t)]}‖rn(t)‖ (C1)

The fluctuation of the number of nodes is determined using
�s(t). That is, when �s(t) > 1.5h, one node is added, and when
�s(t) < 0.2h, one node is deleted. Here, we must determine some
quantities that describe the addition or deletion of one node. The
quantities are the position and velocity of the node that newly ap-
pears or disappears, �s(t), and the number of nodes. These quanti-
ties are determined as follows.

1) When �s(t) > 1.5h (Fig. C1) the distortions of the tether at
the nth and (n + 1)th nodes are considered to be the same. That is,
we have the following equality.

rn + 1/(�s − h) = rn/�s (C2)

Fig. C1 Increase in the number of nodes.

Hence, the position vector of the (n + 1)th node is determined as
follows:

rn + 1 = [(�s − h)/�s]rn = K rn (C3)

The tangential velocities of the tether at the nth and (n + 1)th nodes
are also considered to be the same. Then, the velocity vector at
the (n + 1)th node is determined by linear interpolation as follows,
where e denotes the unit vector along rn and e′ = (ṙn · e)e.

ṙn + 1 = K ṙn + (1 − K )e′ (C4)

Then, one node is added, �s is updated by �snew = �s − h and n
is increased by 1.

2) When �s(t) < 0.2h, one node is deleted and �snew = �s + h,
and n is lessened by 1.

3) When neither �s(t) > 1.5h nor �s(t) < 0.2h, the number of
nodes is unchanged.

We solve the partial differential equation numerically by discretiz-
ing both s and t . Then, the result of discretization is expressed
as

rk + 1
i = F

(
rk

i − 1, rk
i , rk

i + 1

) + G
(
rk − 1

i − 1 , rk − 1
i , rk − 1

i + 1

)
(C5)

where rk
i is the position of the i th node at time step k and F and G are

appropriate functions, whose details are omitted. In the simulation,
�s is calculated first, and we check whether one node is added or
deleted. As described by Eq. (C1), the control input can affect the
motion of the tether through �s, and rk + 1

i can be calculated using
Eq. (C5).

These operations are repeated until the control input is updated.
Because vibrational motion of the tether is much faster than libra-
tional motion of the tethered satellite, the time step for simulation
using the partial differential equation is chosen to be smaller than
the cycle for updating the control input. In this study, the time step
was 0.001 s, and the duration of one cycle was 1 s.
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